Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

fac-Trichloridotrispyrazolerhodium(III)

Ruth Bieda,^a Manuela C. Winter^b and William S. Sheldrick^a*

^aLehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany, and ^bLehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany Correspondence e-mail: william.sheldrick@rub.de

Received 11 July 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 108 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.081; data-to-parameter ratio = 18.8.

The title compound, fac-[RhCl₃(pzH)₃] (pzH = pyrazole) or fac-[RhCl₃($C_3H_4N_2$)₃], was prepared by treating RhCl₃·3H₂O with three equivalents of pyrazole. It contains a central Rh^{III} atom coordinated in a facial manner by three pyrazole N atoms and three chloride ligands. As a result of their participation in weak intramolecular N-H···Cl hydrogen bonds, the pyrazole rings adopt a propeller-like arrangement. The mean planes of the pyrazole ligands exhibit dihedral angles of 26.83 (17), 2.03 (10) and 18.83 $(14)^{\circ}$ with the planes containing their coordinating N atoms, the Rh^{III} atom and the acceptor Cl atoms of their individual N-H···Cl interactions.

Related literature

For related literature, see: Albinati et al. (1999); Cushing et al. (2006); Nicto et al. (2005).

Experimental

Crystal data $[RhCl_3(C_3H_4N_2)_3]$ $M_r = 413.51$

Monoclinic, $P2_1/n$ a = 8.2041 (3) Å

b = 11.9243 (4) Å c = 14.5839 (5) Å $\beta = 100.624 \ (3)^{\circ}$ V = 1402.26 (8) Å³ Z = 4

Data collection

Oxford Diffraction Sapphire2 CCD	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis RED; Oxford	
Diffraction, 2006)	
$T_{\min} = 0.692, T_{\max} = 0.802$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	172 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.88 \text{ e } \text{\AA}^{-3}$
3236 reflections	$\Delta \rho_{\rm min} = -0.78 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N32-H32···Cl1	0.86	2.54	3.053 (3)	119
$N12 - H12 \cdot \cdot \cdot Cl2$	0.86	2.70	3.127 (3)	112
N22-H22···Cl3	0.86	2.46	3.017 (3)	123
$C15-H15\cdots Cl2^{i}$	0.93	2.64	3.330 (3)	131
C33-H33···Cl2 ⁱⁱ	0.93	2.69	3.471 (3)	142
C24-H24···Cl3 ⁱⁱⁱ	0.93	2.76	3.688 (3)	178
$N22 - H22 \cdot \cdot \cdot Cl1^{iv}$	0.86	2.88	3.472 (3)	128
Symmetry codes:	(i) $-x - \frac{1}{2}, y$	$z + \frac{1}{2}, -z + \frac{1}{2};$	(ii) $x - \frac{1}{2}, -y + \frac{1}{2}$	$-\frac{3}{2}, z - \frac{1}{2};$ (iii)

 $x - \frac{1}{2}, -y + \frac{5}{2}, z - \frac{1}{2};$ (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2069).

References

Albinati, A., Bucher, U. E., Gramlich, V., Renn, O., Rügger, H. & Venanzi, L. M. (1999). Inorg. Chim. Acta, 284, 191-204.

Cushing, G. W., Howard, W. A. & Pang, K. (2006). J. Mol. Struct. 797, 165-173. Nicto, S., Pérez, J., Riera, V., Miguel, D. & Alvarez, C. (2005). Chem. Commun. pp. 546-548

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1995). SHELXTL-Plus. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

metal-organic compounds

Mo $K\alpha$ radiation

 $0.52 \times 0.18 \times 0.13$ mm

25826 measured reflections 3236 independent reflections 2701 reflections with $I > 2\sigma(I)$

 $\mu = 1.78 \text{ mm}^{-1}$

T = 108 (2) K

 $R_{\rm int} = 0.041$

Acta Cryst. (2007). E63, m2473 [doi:10.1107/S1600536807042444]

fac-Trichloridotrispyrazolerhodium(III)

R. Bieda, M. C. Winter and W. S. Sheldrick

Comment

The complexes *mer*-[MCl₃(Me₂pzH)₃] [•]CH₃OH (M = Rh, Ir; Me₂pzH = 3,5-dimethylpyrazole) have been prepared by treating MCl₃ [•]xH₂O with three equivalents of 3,5-dimethylpyrazole in methanol at 85°C (Cushing *et al.*, 2006). Only the *mer*-isomers were obtained on subsequent recrystallization from methanol solution. *mer*-[RhCl₃(Me₂pzH)₃] has also been characterized as a decomposition product of the reaction of [RhCl₃(CH₃CN)₃] with Tl[HB(Me₂pz)]₃ (Albinati *et al.*, 1999). A facial tris(dimethylpyrazole) Re^I complex *fac*-[Re(CO)₃(Me₂pzH)₃][B(Ar)₄] (Ar = 3,5-bis(trifluoromethylphenyl)) is also known (Nicto *et al.*, 2005).

We now report the crystal structure of *fac*-[RhCl₃(pzH)₃] (I), which was obtained by treating RhCl₃ '3H₂O in a 2-propanol/water mixture with three equivalents of pyrazole. (I) was recrystallized as the *fac*-isomer from methanol solution and exhibits the expected ¹H NMR resonances at 6.57 (*t*), 6.88 (*d*) and 7.89 (*d*) for the C—H protons and 12.48 (*d*) for the N—H protons of the pure isomer in CDCl₃ solution. A 2:1 mixture of the *fac* and *mer* isomers is observed after 5 h in methanol solution. As depicted in Fig. 1, the pyrazole ligands adopt a propellor-like arrangement in (I) and participate in intramolecular N—H…Cl hydrogen bonds (Table 1) to the nearest chloride ligand. Their best planes exhibit respective dihedral angles of 26.83 (17), 2.03 (10) and 18.83 (14)° to the planes containing their coordinating nitrogen atoms, Rh1 and the acceptor Cl atoms of their N—H…Cl interactions. The molecules are linked into a network by intermolecular N—H…Cl and C—H…Cl hydrogen bonds (Fig. 2).

Experimental

fac-[RhCl₃(pzH)₃] (I) was prepared by treating 50.5 mg RhCl₃ '3H₂O (0.19 mmol) in 0.9 ml 2-propanol/water (5:1) with 3 equivalents of pyrazole (40.2 mg, 0.59 mmol). After stirring for 1.5 h, the resulting yellow precipitate was removed by centrifugation and washed with 2 ml of 2-propanol to afford *fac*-[RhCl₃(pzH)₃] in 17% yield (13.7 mg). Elemental anlysis (Vario EL) for C₉H₁₂Cl₃N₆Rh 'H₂O (M = 431.5): C 25.4 (calc. 25.7), H 3.2 (calc. 3.4), N 19.4 (calc. 19.3). FAB MS on a VG Autospec: m/z 435(3%) [M+Na]⁺, 377(15%) [M--Cl]^{+. 1}H NMR (CDCl₃) on a Bruker DRX 400: δ 6.57 (t, 3H, pzH-b), 6.88 (d, 3H, pzH-c), 7.89 (d, 3H, pyH-a), 12.48 (d, 3H, NH). Suitable crystals for X-ray analysis were obtained by slow evaporation of a methanol solution of (I).

Refinement

H atoms were constrained to idealized positions and refined using a riding model, with C—H distances of 0.93 Å and N—H distances of 0.86 Å; $U_{iso}(H) = 1.2 U_{iso}(C)$ for the former and $U_{iso}(H) = 1.2 U_{iso}(N)$ for the latter protons.

Figures

Fig. 1 Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Fig. 2 Hydrogen bonds between the anions and cations of (I). The colour code is the same as in Fig. 1.

fac-Trichloridotrispyrazolerhodium(III)

Crystal data	
$[RhCl_3(C_3H_4N_2)_3]$	$F_{000} = 816$
$M_r = 413.51$	$D_{\rm x} = 1.959 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 14706 reflections
<i>a</i> = 8.2041 (3) Å	$\theta = 2.5 - 27.5^{\circ}$
<i>b</i> = 11.9243 (4) Å	$\mu = 1.78 \text{ mm}^{-1}$
c = 14.5839 (5) Å	T = 108 (2) K
$\beta = 100.624 \ (3)^{\circ}$	Prismatic, orange
V = 1402.26 (8) Å ³	$0.52\times0.18\times0.13~mm$
Z = 4	

Data collection

Oxford Diffraction Sapphire2 CCD diffractometer	3236 independent reflections
Radiation source: fine-focus sealed tube	2701 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 108(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
1109 images at 1.0 deg in ω and 20 s scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)	$h = -10 \rightarrow 10$
$T_{\min} = 0.692, \ T_{\max} = 0.802$	$k = -15 \rightarrow 14$

25826 measured reflections	$l = -19 \rightarrow 18$
----------------------------	--------------------------

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
3236 reflections	$\Delta \rho_{max} = 0.88 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{min} = -0.78 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Rh1	-0.00400 (3)	0.990704 (18)	0.245999 (14)	0.01730 (9)
Cl1	0.19460 (10)	0.92389 (8)	0.16155 (5)	0.03188 (19)
C12	0.01555 (10)	0.82640 (6)	0.33384 (5)	0.02876 (18)
C13	0.19940 (9)	1.07268 (7)	0.35894 (5)	0.02689 (17)
N11	-0.1773 (3)	1.0492 (2)	0.31679 (17)	0.0195 (5)
N12	-0.1894 (4)	1.0192 (2)	0.40354 (19)	0.0319 (6)
H12	-0.1245	0.9729	0.4377	0.038*
C13	-0.3195 (5)	1.0729 (3)	0.4296 (2)	0.0358 (8)
H13	-0.3541	1.0660	0.4866	0.043*
C14	-0.3900 (4)	1.1389 (3)	0.3568 (2)	0.0290 (7)
H14	-0.4817	1.1855	0.3540	0.035*
C15	-0.2986 (4)	1.1227 (2)	0.2887 (2)	0.0201 (6)
H15	-0.3182	1.1580	0.2309	0.024*
N21	-0.0229 (3)	1.1355 (2)	0.16938 (17)	0.0211 (5)
N22	0.0733 (3)	1.2255 (2)	0.19646 (18)	0.0258 (6)
H22	0.1480	1.2284	0.2463	0.031*
C23	0.0374 (4)	1.3100 (3)	0.1356 (2)	0.0278 (7)

H23	0.0873	1.3803	0.1398	0.033*
C24	-0.0870 (4)	1.2733 (3)	0.0658 (2)	0.0271 (7)
H24	-0.1381	1.3130	0.0135	0.033*
C25	-0.1203 (4)	1.1638 (3)	0.0903 (2)	0.0267 (7)
H25	-0.1997	1.1173	0.0558	0.032*
N31	-0.1879 (3)	0.9203 (2)	0.14972 (17)	0.0208 (5)
N32	-0.1648 (4)	0.8932 (2)	0.06342 (18)	0.0292 (6)
H32	-0.0731	0.9016	0.0436	0.035*
C33	-0.3044 (5)	0.8512 (3)	0.0127 (2)	0.0390 (9)
Н33	-0.3184	0.8265	-0.0488	0.047*
C34	-0.4233 (4)	0.8513 (3)	0.0680 (3)	0.0379 (8)
H34	-0.5325	0.8268	0.0520	0.045*
C35	-0.3450 (4)	0.8960 (3)	0.1528 (2)	0.0297 (7)
H35	-0.3952	0.9073	0.2043	0.036*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01787 (13)	0.02047 (13)	0.01265 (12)	0.00115 (8)	0.00043 (8)	0.00065 (8)
Cl1	0.0259 (4)	0.0454 (5)	0.0252 (4)	0.0060 (3)	0.0069 (3)	-0.0037 (3)
Cl2	0.0346 (4)	0.0227 (4)	0.0259 (4)	0.0059 (3)	-0.0025 (3)	0.0035 (3)
C13	0.0261 (4)	0.0300 (4)	0.0206 (3)	-0.0029 (3)	-0.0061 (3)	0.0014 (3)
N11	0.0220 (12)	0.0179 (12)	0.0172 (11)	-0.0001 (9)	0.0001 (9)	0.0013 (9)
N12	0.0423 (17)	0.0324 (15)	0.0203 (13)	0.0064 (13)	0.0040 (12)	0.0056 (11)
C13	0.053 (2)	0.0321 (18)	0.0272 (17)	0.0060 (16)	0.0211 (16)	0.0030 (14)
C14	0.0290 (17)	0.0246 (16)	0.0361 (18)	0.0027 (13)	0.0126 (14)	-0.0006 (13)
C15	0.0221 (14)	0.0204 (14)	0.0174 (13)	0.0029 (11)	0.0021 (11)	0.0038 (11)
N21	0.0177 (12)	0.0254 (13)	0.0198 (12)	-0.0026 (10)	0.0025 (9)	0.0007 (10)
N22	0.0267 (13)	0.0303 (14)	0.0189 (12)	-0.0040 (11)	0.0003 (10)	0.0018 (10)
C23	0.0324 (17)	0.0286 (17)	0.0237 (15)	-0.0048 (13)	0.0084 (13)	0.0039 (12)
C24	0.0305 (16)	0.0307 (17)	0.0199 (14)	0.0027 (13)	0.0040 (12)	0.0066 (12)
C25	0.0267 (16)	0.0323 (17)	0.0197 (14)	-0.0022 (13)	0.0010 (12)	0.0024 (12)
N31	0.0238 (12)	0.0207 (12)	0.0167 (11)	-0.0001 (10)	0.0006 (9)	0.0000 (9)
N32	0.0337 (15)	0.0347 (15)	0.0187 (12)	-0.0005 (12)	0.0036 (11)	-0.0052 (11)
C33	0.044 (2)	0.040 (2)	0.0280 (18)	0.0013 (16)	-0.0076 (15)	-0.0123 (15)
C34	0.0285 (18)	0.038 (2)	0.042 (2)	-0.0012 (15)	-0.0078 (15)	-0.0092 (16)
C35	0.0249 (16)	0.0360 (18)	0.0275 (16)	-0.0022 (13)	0.0026 (13)	-0.0042 (14)

Geometric parameters (Å, °)

Rh1—N11	2.029 (3)	N22—C23	1.339 (4)
Rh1—N31	2.043 (2)	N22—H22	0.8600
Rh1—N21	2.047 (3)	C23—C24	1.373 (5)
Rh1—Cl2	2.3302 (8)	С23—Н23	0.9300
Rh1—Cl3	2.3323 (7)	C24—C25	1.394 (5)
Rh1—Cl1	2.3550 (8)	C24—H24	0.9300
N11—C15	1.333 (4)	C25—H25	0.9300
N11—N12	1.336 (4)	N31—C35	1.330 (4)
N12—C13	1.358 (5)	N31—N32	1.346 (3)

N12—H12	0.8600	N32—C33	1.341 (4)
C13—C14	1.363 (5)	N32—H32	0.8600
C13—H13	0.9300	C33—C34	1.375 (6)
C14—C15	1.363 (4)	С33—Н33	0.9300
C14—H14	0.9300	C34—C35	1.392 (5)
C15—H15	0.9300	C34—H34	0.9300
N21—C25	1.320 (4)	С35—Н35	0.9300
N21—N22	1.348 (4)		
N11—Rh1—N31	89.60 (10)	C25—N21—N22	106.3 (3)
N11—Rh1—N21	89.87 (10)	C25—N21—Rh1	131.7 (2)
N31—Rh1—N21	89.96 (10)	N22—N21—Rh1	122.04 (18)
N11—Rh1—Cl2	89.61 (7)	C23—N22—N21	111.0 (3)
N31—Rh1—Cl2	89.98 (7)	C23—N22—H22	124.5
N21—Rh1—Cl2	179.48 (7)	N21—N22—H22	124.5
N11—Rh1—Cl3	88.49 (7)	N22—C23—C24	107.1 (3)
N31—Rh1—Cl3	178.08 (7)	N22—C23—H23	126.4
N21—Rh1—Cl3	90.25 (7)	С24—С23—Н23	126.4
Cl2—Rh1—Cl3	89.79 (3)	C23—C24—C25	105.2 (3)
N11—Rh1—Cl1	179.07 (7)	C23—C24—H24	127.4
N31—Rh1—Cl1	89.77 (7)	C25—C24—H24	127.4
N21—Rh1—Cl1	89.43 (7)	N21—C25—C24	110.3 (3)
Cl2—Rh1—Cl1	91.08 (3)	N21—C25—H25	124.8
Cl3—Rh1—Cl1	92.14 (3)	C24—C25—H25	124.8
C15—N11—N12	106.6 (3)	C35—N31—N32	106.5 (3)
C15—N11—Rh1	128.6 (2)	C35—N31—Rh1	131.6 (2)
N12—N11—Rh1	124.8 (2)	N32—N31—Rh1	121.9 (2)
N11—N12—C13	109.8 (3)	C33—N32—N31	110.6 (3)
N11—N12—H12	125.1	C33—N32—H32	124.7
C13—N12—H12	125.1	N31—N32—H32	124.7
N12—C13—C14	107.2 (3)	N32—C33—C34	107.6 (3)
N12-C13-H13	126.4	N32—C33—H33	126.2
C14—C13—H13	126.4	С34—С33—Н33	126.2
C13—C14—C15	105.9 (3)	C33—C34—C35	105.1 (3)
C13—C14—H14	127.0	С33—С34—Н34	127.4
C15-C14-H14	127.0	C35—C34—H34	127.4
N11—C15—C14	110.5 (3)	N31—C35—C34	110.2 (3)
N11—C15—H15	124.8	N31—C35—H35	124.9
C14—C15—H15	124.8	С34—С35—Н35	124.9

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!A$
N32—H32…Cl1	0.86	2.54	3.053 (3)	119
N12—H12···Cl2	0.86	2.70	3.127 (3)	112
N22—H22…Cl3	0.86	2.46	3.017 (3)	123
C15—H15···Cl2 ⁱ	0.93	2.64	3.330 (3)	131
C33—H33···Cl2 ⁱⁱ	0.93	2.69	3.471 (3)	142
C24—H24···Cl3 ⁱⁱⁱ	0.93	2.76	3.688 (3)	178

N22—H22…Cl1^{iv} 0.86 2.88 3.472 (3) 128 Symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) x-1/2, -y+3/2, z-1/2; (iii) x-1/2, -y+5/2, z-1/2; (iv) -x+1/2, y+1/2, -z+1/2.

